Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(10): 16010-16024, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157689

RESUMO

To improve color conversion performance for color display application, we study the near-field-induced nanoscale-cavity effects on the emission efficiency and Förster resonance energy transfer (FRET) under the condition of surface plasmon (SP) coupling by inserting colloidal quantum dots (QDs) and synthesized Ag nanoparticles (NPs) into surface nano-holes fabricated on a GaN template and an InGaN/GaN quantum-well (QW) template. In the QW template, the inserted Ag NPs are close to either QWs or QDs for producing three-body SP coupling to enhance color conversion. Time-resolved and continuous-wave photoluminescence (PL) behaviors of the QW- and QD-emitting lights are investigated. The comparison between the nano-hole samples and the reference samples of surface QD/Ag NP shows that the nanoscale-cavity effect of the nano-hole leads to the enhancements of QD emission, FRET between QDs, and FRET from QW into QD. The SP coupling induced by the inserted Ag NPs can enhance the QD emission and FRET from QW into QD. Its result is further enhanced through the nanoscale-cavity effect. The relative continuous-wave PL intensities among different color components also show the similar behaviors. By introducing SP coupling to a color conversion device with the FRET process in a nanoscale cavity structure, we can significantly improve the color conversion efficiency. Simulation results confirm the basic observations in experiment.

2.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242033

RESUMO

The high porosity of a GaN porous structure (PS) makes it mechanically semi-flexible and can shield against the stress from the thick growth template on an overgrown layer to control the lattice structure or composition within the overgrown layer. To understand this stress shield effect, we investigated the lattice constant variations among different growth layers in various samples of overgrown Al0.3Ga0.7N on GaN templates under different strain-relaxation conditions based on d-spacing crystal lattice analysis. The fabrication of a strain-damping PS in a GaN template shields against the stress from the thick GaN template on the GaN interlayer, which lies between the PS and the overgrown AlGaN layer, such that the stress counteraction of the AlGaN layer against the GaN interlayer can reduce the tensile strain in AlGaN and increase its critical thickness. If the GaN interlayer is thin, such that a strong AlGaN counteraction occurs, the increased critical thickness can become larger than the overgrown AlGaN thickness. In this situation, crack-free, thick AlGaN overgrowth is feasible.

3.
Opt Express ; 31(4): 6327-6341, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823892

RESUMO

To improve the color conversion performance, we study the nanoscale-cavity effects on the emission efficiency of a colloidal quantum dot (QD) and the Förster resonance energy transfer (FRET) from quantum well (QW) into QD in a GaN porous structure (PS). For this study, we insert green-emitting QD (GQD) and red-emitting QD (RQD) into the fabricated PSs in a GaN template and a blue-emitting QW template, and investigate the behaviors of the photoluminescence (PL) decay times and the intensity ratios of blue, green, and red lights. In the PS samples fabricated on the GaN template, we observe the efficiency enhancements of QD emission and the FRET from GQD into RQD, when compared with the samples of surface QDs, which is attributed to the nanoscale-cavity effect. In the PS samples fabricated on the QW template, the FRET from QW into QD is also enhanced. The enhanced FRET and QD emission efficiencies in a PS result in an improved color conversion performance. Because of the anisotropic PS in the sample surface plane, the polarization dependencies of QD emission and FRET are observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...